【NISC2024倒计时2天】挪威工程院院士、挪威皇家科学院院士、挪威科技大学教授陈德将作大会报告!
发布时间:2024-11-06   访问次数:40

2024国家工业软件大会将于2024年11月8日-10日(8日报到注册)上海松江富悦大酒店举办,本届大会主题为“Al for Engineering·工业软件赋能新型工业化”,旨在围绕我国工业智能领域战略布局、技术创新应用、产业融合发展等行业热点进行深入交流。

挪威工程院院士、挪威皇家科学院院士、挪威科技大学教授陈德将在2024国家工业软件大会现场作特邀报告,畅谈“AI-driven Modeling of the Chemical Process at Different Scales”,精彩报告,敬请期待!



大会报告


图片


陈德

挪威工程院院士

挪威皇家科学院院士

挪威科技大学教授

报告题目:
AI-driven Modeling of the Chemical Process at Different Scales

报告摘要

This study introduces an AI-driven, multiscale modeling approach to improve catalytic performance in reactions on metal catalysts, with a focus on propane dehydrogenation (PDH)—a critical process for sustainable propylene production. Using machine learning, we predict adsorption energies, activation barriers, and reaction pathways on a range of mono- and bimetallic surfaces, traditionally calculated with density functional theory (DFT). Through microkinetic modeling, we identify key reaction pathways and rate-determining steps, streamlining this complex model into a simplified Langmuir-Hinshelwood kinetic model for practical application. The AI-driven, scaling relationship-based microkinetic modeling enables rapid catalyst screening, pinpointing surface properties that influence propane activation and selective C-H bond scission. This approach advances the efficient design of catalysts for PDH, supporting sustainable propylene production with enhanced selectivity and stability.


At the mesoscale, reinforcement learning optimizes catalyst nanostructures and support materials, enhancing transport properties and reducing side reactions like cracking and coke formation. This modeling provides insights into reaction kinetics and diffusion in catalyst pores, crucial for maintaining selectivity and prolonging catalyst life.


At the macroscale, AI-driven process modeling enables reactor-level simulations, optimizing temperature, pressure, and feed composition to support stable and efficient propylene production. The model further integrates real-time adjustments for catalyst deactivation, improving operational consistency and yield.


Our findings reveal critical descriptors—such as adsorption energy and electronic properties—that strongly correlate with catalytic performance, guiding the rational design of stable, selective catalysts for chemical processes such as propane dehydrogenation, and acetylene semi-hydrogenation. By minimizing computational and experimental demands, this AI-driven, multiscale modeling approach provides a robust, scalable framework for advancing chemical technologies. Ultimately, this study contributes to the development of efficient, energy-saving catalytic processes, enabling sustainable innovations in catalytic science through AI-driven multiscale insights.


报告人简介:
陈德,挪威技术科学学院院士、挪威皇家科学院院士。于1998年在挪威科技大学获得工业催化博士学位,自2001年起担任挪威科技大学(NTNU)化学工程系催化教授(1998-2001年为副教授)。曾在加州大学伯克利分校(2009-2010)和华东理工大学(2017-2018)担任访问教授。研究内容主要集中在催化科学与工业化学过程界面的多尺度方法,在理论与实验相结合的多相催化研究中取得多项技术突破,开发了新型催化剂用于气体液化、聚氯乙烯(PVC)单体生产、生物质液化、天然气制烯烃、氢气生产和燃料、以及二氧化碳捕集技术、塑料废物回收和能源储存的材料研究。